

1

 CORNELL ECE/MAE 4150

Fall 2008

Limited Satellite
Navigation Solution

Finding a location with fewer than 4 satellites
Karl Gluck, Jasper Schneider, Rui Rick Wu

F I N A L C L A S S P R O J E C T

2

Abstract
The standard methods used by Global Positioning System (GPS) receivers require at least four satellites

to determine the receiver's location. Receivers in urban, forested or other environments with limited sky
visibility would benefit from being able to find a reliable and accurate navigation solution with fewer satellites.
This paper develops a method combining both satellite Doppler shift and pseudorange solutions to create a
navigation solution for a stationary receiver requiring at minimum two satellites. It shows that not only can a
reasonably accurate receiver location be determined with fewer than four satellites, but also that the method
developed can improve the N-satellite solution found by the pseudorange method.

3

Contents
1. Introduction ..5

1.1. GPS Basics ...5

1.2. Motivation ..5

1.3. Background ...5

1.3.1. Pseudorange Solution ...5

1.3.2. Doppler Solution ...7

1.4. Combined Approach ...9

2. Methodology ... 10

2.1. Key Points in Solution Formulation ... 10

2.1.1. Error Correction ... 10

2.1.2. Reducing the Number of Variables .. 10

2.2. Final Algorithm .. 12

2.3. Antenna/Receiver Details and Data Collection ... 12

3. Results ... 13

3.1. Overview .. 13

3.1.1. Navigation Solution ... 13

3.1.2. Exponential Weighting .. 13

3.1.3. Dilution of Precision Effect on Error .. 13

3.1.4. Four Satellite Comparison ... 13

3.2. Solution Method Average Error Comparison .. 14

3.3. Two Satellite Solution .. 15

3.4. Two Satellite Solution - Exponential Weighting .. 16

3.5. Three Satellite Solution ... 17

3.6. Four Satellite Solution: Comparison with Pseudorange ... 18

4. Discussion .. 19

4.1. Data Analysis ... 19

4.1.1. Discussion of Two, Three, and Four Satellite Errors .. 19

4.1.2. Analysis of Good and Bad Combinations ... 19

4.1.3. Merits of Exponential Weighting ... 20

4.2. Solution Convergence and the Newton-Raphson Method ... 20

4.3. Future Work... 20

5. Conclusion ... 21

6. Saving the World: Sustainability & Us .. 21

7. Bibliography ... 21

8. Appendix Data ... 22

8.1. Satellite Errors ... 22

8.1.1. Data Set 1: Two Satellite Errors and DOP .. 22

4

8.1.2. Data Set 2: Two Satellite Errors and DOP .. 23

8.1.3. Data Set 1: Three Satellite Errors and DOP ... 24

8.1.4. Data Set 2: Three Satellite Errors and DOP ... 25

9. Appendix Code .. 27

9.1. calcpropdelays.m ... 27

9.2. constant.m (written by Dr. Paul Kintner) .. 27

9.3. dopplerradialvel.m .. 27

9.4. dopsoln.m .. 28

9.5. dopsolncombos.m ... 30

9.6. ecef.m (written by Dr. Paul Kintner).. 33

9.7. ephemposvel.m (based on findsat.m by Dr. Paul Kintner) .. 33

9.8. formatData.m (written by Dr. Paul Kintner) .. 35

9.9. latlong.m (written by Dr. Paul Kintner) ... 37

9.10. loaddata.m ... 37

9.11. locdiff.m ... 37

9.12. locdiffmag.m .. 38

9.13. pseudoCalc.m (written by Dr. Paul Kintner) .. 38

9.14. surfacevelocity.m .. 39

10. The Dogpler Cone .. 40

11. Pseudoramster .. 40

5

1. Introduction

1.1. GPS Basics
GPS, operated by the United States Air Force, is currently the world's only functional positioning

system. Between twenty-four and thirty-two satellites orbit Earth twice each sidereal day at an average altitude
of 20200 km. These are evenly spaced in six orbital frames to ensure maximum visibility from most points on
Earth.

Each satellite transmits orbital information, known as ephemerides, on a specific carrier frequency.
From this data, a receiver can determine where the satellites are located in space and measure a pseudorange
for each visible satellite. This pseudorange is the addition of the signal distance from receiver to satellite and an
error term, common to all satellites tracked by a receiver, created by the imperfect receiver clock. By
simultaneously measuring the pseudorange to at least four satellites, the receiver can calculate its 3D position
and the clock error term.

There also exists a second, less commonly-used method of navigation based on Doppler shift. In order
to receive a satellite’s signal, the receiver must tune in to the frequency at which the signal is arriving. Because
the receiver and satellite are moving relative to one another, this frequency is Doppler shifted from the L1
carrier frequency on which all civilian GPS transmissions are made. When first turned on, this is done by trial-
and-error; however, the result is that once a satellite is detected, it is assigned a value of the internal
numerically controlled oscillator (NCO) that is used to receive the signal. This value is, like the pseudorange, a
combination of the true frequency and an error term that accounts for receiver oscillator imperfection. By
simultaneously measuring the NCO to at least four satellites, the receiver can perform a similar computation as
for pseudorange to calculate its location and the error value.

1.2. Motivation
Pseudorange positioning is very effective in suitable environments. Ideally, the antenna has a clear view

of the sky, is located above all reflecting surfaces, and is tracking more than four satellites spread far apart in the
sky relative to the receiver. In reality, GPS devices are commonly used in big cities or wooded areas where
objects obscuring the sky may prevent the receiver from tracking a sufficient number of satellites, or where the
satellites available may be in a geometric configuration that magnifies their common errors. Our approach,
combining both pseudorange and Doppler shift methods, not only allows a navigation solution to be found with
only two satellites, but also creates a more accurate solution for a given number of satellites than pseudorange
or Doppler alone.

1.3. Background

1.3.1. Pseudorange Solution

The most common technique implemented in today's civilian GPS receivers for determining the

navigation solution is the pseudorange method. The pseudorange is measured by the speed of light multiplied
by the difference in transmitted and receive times. The pseudorange can be expressed in terms of the true
range in terms of receiver and satellite clock corrections:

 () () () ()
where () is the satellite clock offset and () is the receiver clock offset. Using the ephemerides to
find the location of the satellite, we can construct spheres centered at the satellite with the radius equal to the
pseudorange. All measurements are made in the ECEF (Earth Centered Earth Fixed) frame. The equation of each
sphere can be expressed in terms of the true range:

1.1

6

 √() () ()

where (, ,) are the positions of the jth satellite in the ECEF Frame. (X, Y, Z) is the ECEF position of the
receiver. In terms of the measurable quantity pseudorange:

 () () √() () () ()

Pseudorange, satellite clock offset (given in ephemerides), and the satellite positions are known. This
leaves four variables: X, Y, Z, and . If the receiver can obtain at least four pseudorange measurements, these
unknowns can be found. With the Newton-Raphson method, the solution to these non-linear equations is found
through iteration. ΔX, ΔY, ΔZ, and correction values are found after every iteration and update the previous
values of X, Y, and Z. ΔX, ΔY, ΔZ, and are computed as follows:

The delta x vector is found using Δx = A-1F. F is a column vector containing (1.3) for each satellite used in
the navigation solution. The ith row of the A matrix contains the derivatives of the ith row in the F vector. The A
matrix is constructed as shown below:

(

)

Applying this to 1.3, we have:

(

 ()

 ()

 ()

 ()

 ()

 ()

 ()

 ()

 ()

)

Now, Δx is defined as:

(

)

(

 ()

 ()

 ()

 ()

 ()

 ()

 ()

 ()

 ()

)

(

 ()
 ()

 ()
 ()

 ()

 ())

where
 is the range calculated from the initial guess at the receiver location given by the user. When

more than four satellites are used, there will not exist a consistent solution to the system of equations. Thus, we
must look for a solution that minimizes the error--the least squares projection. Δx can be computed as follows:

 ()
Δx is then added to the original guess, giving successive approximations to the true location. Once the
magnitude of this difference vector is sufficiently small, i.e. on the order of 10-6, the method terminates and
returns the solution (Course Packet, Chapter 7: Navigation Solution).

1.2

1.3

1.4

1.5

1.6

1. 7

7

1.3.2. Doppler Solution

In order to lock on to a satellite signal, it is necessary for all receivers to find the satellite's Doppler shift;

thus, no hardware modifications would be necessary to employ it. However, Doppler positioning is not widely
used by GPS receivers for several reasons. Primarily, the Doppler shift solution suffers from lack of precision
because Doppler shift values are not measured to the same degree of precision as pseudorange. Additionally,
the Doppler solution requires a stationary receiver.

The Doppler effect is the rise or fall in the frequency of a propagating wave depending on the relative
motion of the transmitting object with respect to the receiver. If the transmitter and receiver are moving
toward one another, the frequency received is higher than the frequency transmitted. Likewise, if the pair are
getting further apart, the received frequency falls. For GPS satellites and receivers, we can form the Doppler
equation as follows:

{

 ()

Now we can manipulate this equation and put it in the form of known values and desired unknowns:

 ()

[
()

] ()

Doppler shift is measurable, the satellite position and velocity vectors can be found from the ephemerides, and
λL1 is a known constant. Thus, only the position of the receiver, ru is unknown. Using cos(x) = x • y / |x||y|, we
can rewrite (1.10) as:

 ()

 (

)

α is the angle between the satellite's velocity vector and the vector between the satellite and the receiver.
The angle is a known quantity at any given time, as all other quantities in that equation can be found. This places
a constraint on the possible locations: the receiver can only be located where the user to satellite vector forms
an angle α with the velocity vector. Geometrically, this represents an infinite cone centered about the velocity
vector, with the vertex at the satellite position.

1.8

1.9

1.10

1.11

1.12

8

Figure 1.1: Doppler Cone. (Lehtinen 20)

Like the receiver's clock, the oscillator that is used to generate the signal frequency is imperfect.
Knowing this, we introduce a new variable for the oscillator error, denoted d. Including this error term, we can
find the system of equations to solve for our navigation solution. Factoring in the error and rewriting D * λL1 as
-vrad, (1.10) becomes.

vi refers to the ith satellite, where i = 1,2...n. With n >= 4, the system of equations can be solved for x, y, z, and d.
Again, this nonlinear system of equations has no closed-form solution and must be solved with an iterative
technique such as the Newton-Raphson method.
Congruous to the pseudorange case, we have Δx= A-1F. The A matrix is defined in the exact same manner as

(1.4), except F now contains

 0

1.The derivatives in the A matrix are now significantly more complex than in the pseudorange method;
however, (Lehtinen 20) shows that they can be reduced to the following form:

(

{() ()

{() ()

{() ()

)

The Δx vector is then defined as:

(

)

(

{() ()

{() ()

{() ()

)

(

)

Once again, to find the solution, we simply update the x position vector with Δx until the magnitude
of Δx is sufficiently small (Lehtinen 16-29)

.

1.13

1.14

1.25

9

1.4. Combined Approach
We now have two unique expressions that give us information relating the satellite's position to the receiver
position: (1.13) for the Doppler shift and (1.3) for pseudorange. Thus, one satellite can provide two independent
nonlinear equations for the receiver solution. For the Newton - Raphson iterative solution, each satellite's
contribution to the F vector is:

{

 ()
 ()

Each satellite's contribution to the A matrix is:

{

 ()

 ()

 ()

{() ()

The total solution vector that describes the receiver’s position, clock error and oscillator drift is:

(

)

The complete terms for the iterative solution are formed by the vertical concatenation of each satellite's
contribution to the F vector and A matrix. The solution is then found using 1.7, the expression for the
overdetermined solution.

1.36

1.47

10

2. Methodology

2.1. Key Points in Solution Formulation

2.1.1. Error Correction
Applying the ideal mathematical solution to a real situation requires that several adjustments be made.

 Satellite clock offset: An imperfect satellite clock reports an incorrect GPS timestamp. This can be
corrected using satellite ephemerides (by pseudoca.m)

 Finite signal propagation time: When the receiver calculates the position of the satellite from
ephemerides, it needs to use a time. This time is first obtained using the timestamp reported from the
ephemerides; however, once an approximate solution for the receiver’s location is found, the
propagation delay from satellite to receiver can be used to compute where the satellite was when the
satellite actually transmitted the signal, not when the measurement was made by the receiver.
calcdiffprop.m calculates the propagation time given a guess of the receiver location, and then
ephemposvel.m (an adapted version of findsat.m that also calculates uncorrected satellite velocities)
calculates the satellite position at the corrected time.

 Rotation of the ECEF frame: During signal propagation, the ECEF frame rotates with the Earth, so the
satellites' positions must be corrected for this. ephemposvel.m calculates this change in position due to
Earth's rotation.

 Surface velocity of the receiver due to Earth's rotation: Because the ECEF frame is rotating, the velocity
of the receiver due to Earth's rotation must be accounted for. surfacevelocity.m calculates the
receiver's velocity based on the current guess of the receiver location, and this velocity is subtracted
from the uncorrected velocity returned by ephemposvel to determine the satellite velocity in the ECEF
frame.

2.1.2. Reducing the Number of Variables
 As described above, the Doppler shift and pseudorange solutions each have an independent error term.
As a result, a complete solution has 5 variables: three for spatial position and one for both the frequency drift of
the receiver’s internal oscillator for Doppler shift and the clock offset of the receiver’s internal timer. In order to
attempt a two-satellite solution, it was necessary to reduce this to only four variables.

If the same clock is physically used for both functions, the frequency drift is the derivative of the internal
clock offset and these could be related to each other mathematically to reduce 5 unknowns to 4 given more
than 1 time sample. However, once the receiver unit used in this investigation begins finding a navigation
solution, it continuously attempts to correct its internal clock offset; therefore, the derivative of this reported
value is meaningless and this approach cannot be used.

We determined by trial and error that reasonably accurate 2-satellite solutions could be obtained by
replacing the frequency drift term by the clock offset times a constant scale factor. As a result the frequency
drift is eliminated from the solution vector.

By experimenting with overdetermined solutions (three or more satellites), we found that using this
scale factor actually improved the accuracy of the solution over the full 5-variable solution. Although the scale
factor’s actual value has not been determined to be meaningful, we have some insight into its approximate
function and appropriate magnitude. Very small values of the scale factor eliminate the receiver clock offset
from the Doppler shift equation and cause the system to become less rigidly defined—a higher range of offsets
cause less error during the solution process.

Large values of the scale factor (greater than 106) marginally improve the solution’s accuracy with
increasing order; however, near the solution point the design matrix begins to contain values with very large
differences in magnitude. As a result, the floating-point operations performed by the computer lose precision
and the matrix becomes almost completely singular.

Changing our method to use the scale factor, the full F vector and A matrix become:

11

(

 ()
 ()

 ()
 ()

)

(

 ()

 ()

 ()

{() ()

 ()

 ()

 ()

{() ()

)

2.1

12

2.2. Final Algorithm
The algorithm implemented by the MATLAB code to find the solution for a set of satellites using our

combined method is as follows:

 Guess at the receiver’s location in latitude, longitude and altitude coordinates and assume a zero initial
receiver clock offset.

 Record the ephemerides, pseudorange and Doppler shift at a given GPS time known by the receiver
clock. Correct the pseudoranges by the satellite clock offset from the ephemerides. Determine the
magnitude of the radial velocity of each satellite by its measured Doppler shift (dopplerradialvel.m).

 For the measurement time, calculates each satellite's position and velocity in the ECEF frame at the GPS
time using the satellite ephemerides (ephemposvel.m).

 Iterate the following steps ten times or until the magnitude of the difference in receiver location
between iterations is less than 1 µm. For the ith iteration:

 Find the receiver’s location in ECEF coordinates based on the WGS-84 model of an ellipsoidal Earth from
the current latitude, longitude altitude guess using the (ecef.m).

 Using the guess at the receiver’s ECEF location and each satellite’s ECEF position, find the approximate
propagation delay by dividing distance by the speed of light, and calculate new values for the satellites’
position and velocities at the received GPS time minus this delay (ephemposvel.m, calcpropdelays.m).

 Find the velocity of the receiver in the ECEF frame by estimating the velocity of the surface of the Earth
due to its rotation (surfacevelocity.m). Find the relative velocity of each satellite by subtracting this
value from the calculated velocity.

 Calculate the F vector and A matrix using Equation 2.1

 Find the next guess at the receiver’s coordinates by evaluating:

 (

) (

)

 Solve for the receiver’s WGS-84 coordinates from the ECEF coordinates (latlong.m)

2.3. Antenna/Receiver Details and Data Collection
The receiver used to obtain data from the GPS satellites was a modified version of the Real-Time Linux

PCI card developed by Aerospace Innovations. The receiver was controlled by a program called Cascade. The
Cascade software is a 12-channel system that measures both integrated carrier phase and code range, and it
employs the industrial standard RINEX-2.10 data format (Course packet: Chapter 1). The receiver was
connected to an antenna on top of Upson Hall at Cornell University with a known position determined by survey
measurements. This position, taken to be the correct position for error calculations later, was 42.444007
degrees latitude, -76.482229 degrees longitude, and 236.548 meters altitude (Course website).

The first data set was collected on Monday, December 1st, 2008. The data collection ran from GPS time
167731 to GPS time 168701. A total of 98 measurements were made, each 10 seconds apart. The satellites
tracked during this time were the satellites with SVIDs 2, 4, 5, 7, 10, 12, 24, 25, 26, 27, 29, and 30. The second
data set was collected on Wednesday, December 3rd, 2008. The data collection ran from GPS time 328835 to
GPS time 330665. A total of 62 measurements were made, each 30 seconds apart. The satellites tracked during
this time were the satellites with SVIDs 2, 4, 5, 9, 10, 12, 13, 17, 20, 23, 28, and 30.

The RINEX .nav and .obs files created by the Cascade software were formatted into matrices usable by
MATLAB programs by using the MATLAB file gps.m and the function formatda.m, both written by Dr. Paul
Kintner. Specifically, three matrices were created for calculations. One matrix contained ephemeris data for all
satellites tracked. Another matrix contained the pseudorange measurements for each satellite, and a final
matrix contained the measured NCO values for each satellite. The NCO values are simply the Doppler shift
values with a constant offset caused by the difference between the local oscillator frequency and the satellite
transmission frequency.

13

3. Results

3.1. Overview

3.1.1. Navigation Solution
We computed the navigation solution for our combined method using two, three, and four satellites, for

two separate data sets. We tabulated the error in each set of solutions by taking the mean of the difference in
calculated locations and the survey-defined antenna location over all time samples in a recorded data set.

3.1.2. Exponential Weighting
Early in this project, we noticed that the two-satellite solution demonstrated high-frequency error. To

improve the solution by mitigating this error, we computed a weighted moving average solution set by
modifying a time-independent solution set with the following algorithm.

The parameter was derived by a trial-error approach.

{
(

) ()(

) ()(

)

3.1.3. Dilution of Precision Effect on Error
For the pure pseudorange solution, dilution of precision is calculated by evaluating the square root of

the trace of the matrix (ATA)-1. In the derivation of dilution of precision, it is assumed that the pseudorange
measurements from each satellite are independent, and that they all have the same variance σp. Therefore, the
covariance matrix of the pseudorange measurements is σp times the identity matrix and can be treated as a
scalar (Class Packet, Chapter 9: Ranging Errors). A similar derivation assuming a diagonal covariance matrix is
used to derive DOP for the Doppler navigation solution and the dilution of precision is calculated in the same
way (Lehtinen 29).

Our method involves both pseudorange and Doppler shift measurements. The error in these
measurements are not necessarily independent, so the covariance matrix of both Doppler and pseudorange
measurements cannot be assumed to be diagonal. However, the foundation of our method is that the
pseudorange and Doppler methods produce independent receiver solutions; therefore, we propose that
evaluating the square root of the trace of the matrix (ATA)-1 provides a good qualitative estimate of dilution of
precision—enough to rank the error inherent in satellite combinations—even if it is not mathematically rigorous.
This was validated by plotting the error for each satellite combination next to its DOP calculation and calculating
the correlation coefficient.

3.1.4. Four Satellite Comparison
To determine whether our combined pseudorange and Doppler shift navigation solution provided any

benefit over the traditional method used by standard GPS receivers using only pseudoranges, the error from our
combined method was compared to the error of the pseudorange navigation solution using 4 satellites. To
eliminate the solution code and conditions as a source of error, the pure pseudorange solution for four satellites
was calculated by removing (commenting out) the Doppler-shift contributions of the satellites from our
navigation solution program.

14

3.2. Solution Method Average Error Comparison
This graph is a stacked histogram that gives a visual representation of the overall errors exhibited by our

navigation solution. Each of the methods analyzed is listed on the vertical axis, sorted by improving overall
solution. Each method’s bar is split into colored blocks whose length represents the percent of solutions with
errors in the range matched to that block’s color.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

4-sat combed weighted

4-sat combined

weighted 4-sat pseudorange

4-sat pseudorange

3 satellite weighted

3 satellite

2 satellite weighted

2 satellite

Fig. 3.1: Comparison of Solution Method Average Error

less than 15 15-35 35-50 50-75 75-100 100-250 250-500 500-1000 1000+
(meters from true ECEF location)

15

3.3. Two Satellite Solution
Figure 3.2: Two Satellite Error and Dilution of
Precision, Plotted for All Satellite Combinations for
time samples (1 - 10). Data Set 1 cutoff at 10,000
meters for graph readability. scale = 1000,
exp_weight = 0.01

correlation coefficient between DOP and error = 0.843693511978030
bad (satellite combinations with error above 10,000 meters)=
[2 4], [2 5], [2 12], [2 24], [2 30], [4 5], [4 12], [4 24], [5 12], [10 27]
[12 30], [24 26], [25 26]

Figure 3.3: Two Satellite Error and Dilution of
Precision, Plotted for All Satellite Combinations for
10 time samples (1 to last available time in intervals
of 10), excluding satellite 30 which had unusable
data. Taken from data set 2 with error cutoff of
10,000m. Scale = 1000.

correlation coefficient between DOP and error = 0.89661512662354
bad (satellite combinations cut off by 10,000 meter limit)=
[2 4], [2 10], [2 13], [4 13], [5 12], [9 17], [17 28]

From these graphs, it can be seen that more than half of the two satellite navigation solutions provide
solutions within 1 kilometer. In both figures, the error plot and DOP have the same overall shape, supporting
the assertion that our method of calculating DOP preserves the quality of the actual dilution of precision. The
maxima and minima mostly occur for the same satellite combinations, and have similar relative magnitudes.

16

3.4. Two Satellite Solution - Exponential Weighting
Weighting the 2-satellite solution’s calculated receiver location over time improved the location’s accuracy in
almost every case. The result was especially apparent for the combinations that produced the highest accuracy,
increasing the accuracy by up to half an order of magnitude.

0.01

0.1

1

10

100

1000

10000

100000

1000000

10000000

H
u

n
d

re
d

s
o

f
M

et
e

rs
 o

f
Er

ro
r

in

EC
EF

 L
o

ca
ti

o
n

2-Satellite Combination, Ranked by Meters of Error in Unweighted Solution

Fig. 3.4: Comparison of 2-Satellite Solution
Average Error

Weighted Unweighted

17

3.5. Three Satellite Solution
Figure 3.5: Three Satellite Error and Dilution of
Precision: Data Set 1, Time Samples [1 - 10], cutoff
of 500 meters. Scale = 1000, exp_weight = 0.01.

correlation coefficient between DOP and error =
0.924016416985303
not graphed (above 500 meters error)=
[2 4 24], [2 12 25], [2 27 30], [4 5 27], [4 7 12], [4 7 26], [4 12 26], [4
12 27], [4 26 27], [5 24 25], [5 25 29], [5 26 27], [7 12 26], [7 24 30], [7
29 30], [10 12 25], [10 27 30], [12 26 27], [24 27 29]

bad combinations (more than 10,000 m error) = [2 27 30], [4 5 27]

Figure 3.6: Three Satellite Error and Dilution of
Precision: Data Set 2, Time Samples [1 - 10], cutoff
of 500 meters. Scale = 1000. exp_weight = 0.01.

correlation coefficient between DOP and error = 0.89661512662354
not graphed (above 500 meters error) = [2 9 17], [2 9 23], [4 9 23], [9 12
20], [10 23 28]
no bad combinations (none more than 10,000 m error)
-Note that satellite 30 was excluded from this analysis: every combination
involving satellite 30 would generate an error over 10,000 meters--at the
starting time, satellite 30 has an elevation of about zero, and hence gives
unsuable data.

From the above figures, it can be seen that using three satellites to calculate a navigation solution

significantly reduces the error compared to two satellites. Most 3 satellite combinations provided solutions
within 200 meters of the actual receiver location. It is more difficult to visually determine the relationship
between error and DOP, but calculation shows that the two are more than 90% correlated.

Figure 1

18

3.6. Four Satellite Solution: Comparison with Pseudorange
The effect of combining pseudorange and Doppler shift measurements to determine a navigation

solution, compared to the traditional method that only involves pseudorange, was examined by comparing the
errors in the two navigation solutions using 4 satellites. Using data set 1, the error in both combined and
pseudorange only navigation solutions were found, both with and without an exponential weighting of 0.01.

Figure 3.7. Comparison of the sorted error in the traditional pseudorange navigation solution to the combined
pseudorange and Doppler shift solution using all combinations of 4 satellites.

Although the lowest errors returned by both solutions are approximately the same, the combined

solution has much lower errors than the pseudorange solution, especially for high error satellite combinations.
The number of satellite combinations with an error greater than 500 meters decreased from 29 to 2 when the
Doppler shift equations were added to the Newton-Raphson matrices. This supports our assumption that
combining Doppler shift and pseudorange measurements can improve the navigation solution when using 4
satellites.

0.01

0.1

1

10

100

1000

H
u

n
d

re
d

s
o

f
M

et
e

rs
 o

f
Er

ro
r

in
 E

C
EF

Lo

ca
ti

o
n

4-Satellite Combination Ranked by Error in the pseudorange solution

4-Satellite Average Error Comparison

pseudorange weighted pseudorange

our combined method weighted combined method

19

4. Discussion

4.1. Data Analysis

4.1.1. Discussion of Two, Three, and Four Satellite Errors
Beginning with the two satellite case, it can be seen that the errors for the navigation solution are generally

greater than 100 meters (Figure 3.1). Nevertheless, there are a small percentage of combinations that returned
errors of less than 50 meters, which could be considered an acceptable error for some applications. The two
satellite case is more susceptible to larger errors, on the order of one kilometer or more. Nearly half of the
combinations returned such errors.

For three satellites, errors are significantly reduced. Approximately 2/3 of the satellite combinations yield
errors of less than 100 meters, and over 40% of the error is less than 50 meters. Only very particular
combinations will give errors greater than 1 kilometer. The unweighted pseudorange solution, with four
satellites, produces navigation solutions with a similar distribution of errors: 2/3 of the errors are less than 100
meters, which is almost identical to the combined three satellite solution; however, 1/3 of the errors are under
50 meters for the pseudorange solution. Recall that our combined solution had approximately 40% under 50
meters, a marked improvement.

The combined four satellite solution makes further improvements, with 37% of the errors under 35 meters;
the unweighted pseudorange solution for four satellites generates 17% of the errors under 35 meters. Less than
5% of the four satellite combinations give errors greater than 1 kilometer, when using our combined solution.

4.1.2. Analysis of Good and Bad Combinations
Figure 4.1. Satellite Positions for Data Sets 1 and 2: Red corresponds to time 1, Blue is end time of data
collection. (Data Set 1 is on the left, Data Set 2 is on the right).

 It was shown earlier in the results section that the error is strongly correlated with the dilution of precision.
However, there are cases where relatively low DOP corresponded to a high error. With the two satellite
navigation solution, using Data Set 1, several combinations were found that satisfied this condition: SV_ids [2
24] and [4 24]. From Appendix 8.1.1, these combinations had errors above 1E6 meters, and DOP’s below
10,000. A DOP of 10,000 was common to combinations that yielded errors below 250 meters.

With Doppler, there is an additional condition that will return large DOP not factored into our computations
for DOP: when the user is in a plane between the two satellites, the intersection of the Doppler cones returns an
entire plane of values. Thus, with two satellites, we do not converge to a solution in this special configuration.
This can explain the errors for both [2 24] and [4 24]. Furthermore, this result shows that our DOP calculations
are not sufficient to account for all sources of error in the combined Doppler / pseudorange solution; further
research is needed to correct this deficiency.

20

Now considering three satellite errors for both data set 1 and 2, the correlation between DOP and error
grows. From (Appendix 8.1.3) and (Appendix 8.1.4), there are no anomalous cases where DOP is low and error is
high. However, there are cases with a high DOP corresponding to low error. For example, satellites [2 10 24]
has an error of 17.7 meters with a DOP of 8.92. Although this DOP seems low compared to the two satellite
case, the overall DOP’s for the three satellites was significantly lower: generally under 5 for good combinations
and over 10 for bad. We theorize that the error is low due to a low Doppler DOP and the overdetermined
solution with three satellites. For future research, one can take the four satellite pseudorange solution and
attempt to fix a high-DOP, high-error combination with Doppler aiding.

Overall, there is a strong correlation between high error and high DOP combinations, using the traditional
DOP calculations. However, as shown above, there exist anomalous cases that the usual DOP calculation cannot
account for, due to the mixing of Doppler and pseudorange in our Newton-Raphson matrices.

4.1.3. Merits of Exponential Weighting
From Figure 3.1, it can be seen that the use of an exponentially weighted moving average reduces the error

in the navigation solution. This improvement is most drastic for two satellite combinations, while only providing
slight improvement for three satellite and four satellite combinations. Starting with the two satellite case, the
number of solutions with errors less than 500 meters increases from approximately 18% to 37%. The number of
solutions with errors less than 100 meters increases from near zero to approximately 5%.

For three satellite combinations, the percentages remain essentially the same, but there is a slight
improvement in the number of satellite combinations with errors less than 15 meters. We theorize that the use
of an averaging filter reduces the effect of zero mean errors, such as random noise, and that the effect of zero
mean errors is greater when using two satellite combinations. For further investigation, the use of other filters,
like the Kalman filter, could be examined to further improve the navigation solution.

4.2. Solution Convergence and the Newton-Raphson Method
Using the Newton-Raphson method to solve the system of nonlinear equations developed for our

method is convenient because of its simplicity, but a more robust tool to find the global minimum might allow
better solutions to be found. There are several fundamental conditions necessary to employ the Newton-
Raphson method. First, the initial guess must be near the desired local minimum and not on a saddle point or
maxima. Second, to find the optimal solution, the local minimum that the initial guess tends toward must be the
true solution. Finally, the first-order term must be the strongest influence on the overall shape of the solution
space such that the higher-order contributors can be ignored during iteration.

The Doppler shift introduces nonlinearity into the Jacobian matrix of the Newton-Raphson method that
is not present in the pseudorange solution. Additionally, in order to simplify the math, some nonlinear
contributors that affect the calculated solution are not integrated into the system of equations and are instead
updated between iterations. Such contributors involve signal propagation delay and surface-of-earth relative
velocity correction. Correcting these terms reduces the dimension of the solution space, but in order to do so
we have to make the assumption that updating the terms does not fundamentally change the shape of the
remaining solution space. This may not be the case for all satellite configurations.

4.3. Future Work
Although we believe our results are solid, the ambiguity of the scale factor certainly merits further

analysis. Specifically, it is important to see if the constant clock-error correction of the receiver unit used for
testing is having an effect on the results of this method; however, our receiver does not allow this feature to be
disabled. The following topics, some mentioned previously, could be useful in furthering the investigation
started by this work:

 Kalman Filtering

 How to actually calculate the combined DOP

 How much does Doppler actually aid the overdetermined pseudorange solution?

 Analyze the impact of Doppler DOP/noise on the pseudorange solution for 2, 3, 4 satellites.

 Attempt a single-satellite solution with known altitude (via altimeter)

21

5. Conclusion

This paper attempted a limited satellite navigation solution using combined pseudorange and Doppler shift
information. The results of this initial investigation are promising: using two satellites we are able to achieve a
reasonably correct receiver location; with both three and four satellites, we could find a more accurate solution
than the pure 4-satellite pseudorange method. The technique we present could be implemented in GPS
receivers marketed for use in areas with limited sky visibility to improve the reliability of the units.

6. Saving the World: Sustainability & Us

If fewer satellites were required for GPS navigation than the twenty-four to thirty-two currently in use, there

would be far-reaching environmental and social consequences. GPS satellites have finite lifetimes of
approximately 7 to 9 years (GPS packet Chapter 1), and they must constantly be replaced. The cost of
replacement could drastically be lowered if fewer satellites were necessary, allowing the government to devote
this money to other programs such as health care and research on renewable energy sources. The resources
required to replace each satellite would not be consumed in such large amounts, contributing to sustainability of
Earth's resources. Another consideration is that the emissions from burning the fuel required to launch each
satellite into space could also be greatly reduced.

7. Bibliography
Kintner, Paul. Course Documents of GPS Theory and Design: chapters 1, 7, 9. Version made available Fall

2008. http://gps.ece.cornell.edu/ece415/
Lehtinen, Antti. Doppler Positioning with GPS. Unpublished. 2001-2002. Available at

math.tut.fi/posgroup/DopplerPositioningwithGPS.pdf, accessed November 2008.

22

8. Appendix Data

8.1. Satellite Errors

8.1.1. Data Set 1: Two Satellite Errors and DOP
Two Satellite exp_weight = 0.01, Scale = 1000. Data Set 1.

Sorted Error of Two Satellite Navigation Solution for Data Set 1

Error (m) DOP SV IDs Error (m) DOP SV IDs Error (m) DOP SV IDs

21.6120881 22074.07047 10 26 417.588235 5313.078195 10 29 1242.856693 57072.38365 25 27

42.9317138 7626.965835 10 25 431.3389502 8775.412738 2 10 1460.552757 6057.12825 7 24

46.9281718 5401.532213 24 25 441.6365158 6179.497648 26 30 1915.755705 34840.12916 24 30

80.4151967 11257.32729 10 24 484.1969929 8740.711656 2 26 2594.905149 32051.57765 26 27

100.5073783 8477.800204 25 30 486.4341649 7198.866381 5 27 3710.614086 11426.72537 7 10

119.7229169 5396.607652 4 26 515.5453596 5337.952991 5 7 3779.43478 36106.07486 7 26

124.72983 6438.385255 5 26 531.24067 6234.928888 4 27 4997.953754 73626.43547 7 25

128.2303377 9810.604453 2 29 539.2898128 15712.47553 5 29 7957.306392 105671.8975 5 30

148.9155061 9142.089049 4 10 568.725052 6818.407601 4 7 9204.545081 211059.4869 7 27

159.5532 8305.614758 12 27 571.4467586 6250.552185 10 30 10404.86394 59844.58118 12 30

160.8868534 20630.59459 29 30 573.7428257 4845.154318 25 29 10873.44736 107209.3062 5 12

199.5830912 6318.561147 12 26 604.5126296 6192.644194 5 25 12900.32521 20659.4208 2 30

260.4219414 4843.15819 12 25 693.1755228 15706.00473 10 12 17284.23033 19752.42781 10 27

265.3814806 10176.41602 5 10 716.4386787 6923.422779 24 27 106049.075 36375.35754 4 5

266.2263119 5775.467419 7 30 742.0298578 8871.776886 4 29 228609.3893 37692.75605 25 26

267.3449052 44805.45462 4 30 766.4062867 5803.193365 2 27 440333.8679 34802.25882 4 12

273.5742729 4965.562803 2 7 885.9655244 13748.31303 24 29 5327374.294 44224.66185 2 4

275.8229978 8342.27353 4 25 943.1723681 7236.771125 7 12 5596529.198 85616.15993 2 12

282.493896 4830.150015 7 29 986.9212625 4539.413485 27 30 8636529.797 7314.904942 4 24

315.0974721 11446.92078 12 24 1019.217523 4824.959594 27 29 15695107.88 8758.452322 2 24

344.4353701 15401.3353 5 24 1164.727259 12044.97361 26 29 23715968.07 41922.31732 24 26

369.6309551 4730.259123 2 25 1179.713943 14524.81869 12 29 44026517.82 114074.8808 2 5

23

8.1.2. Data Set 2: Two Satellite Errors and DOP
Two Satellite Errors, exp_weight = 0.01, Scale = 1000, Data Set 2.

Sorted Error of Two Satellite Navigation Solution for Data Set 2

Error (m) DOP SV IDs Error (m) DOP SV IDs Error (m) DOP SV IDs

37.0216365 6469.640098 10 17 658.3639806 8348.875007 23 28 3520.577951 25365.502 12 28

84.8347634 17162.37052 9 12 676.8764488 8928.837454 4 20 4378.334531 31675.76609 20 28

104.0202311 5600.461823 5 13 741.1470222 10598.57859 13 20 5714.809172 69086.07415 13 23

105.6501845 13199.67235 5 9 749.8860764 6256.865663 2 28 8836.164869 17113.24404 9 28

116.2253395 10132.99596 4 17 846.6523042 10532.62788 17 20 34046.14969 142790.9953 17 28

122.0862613 7146.292573 2 20 905.3510655 9508.021024 12 17 140716.6051 34006.35878 9 17

122.4606821 20284.44884 4 10 945.9850115 5202.030678 10 28 373565.0681 30354.1044 2 13

161.0281275 12667.27019 20 23 1006.39485 4938.698493 12 23 2703124.523 34573.56071 4 13

169.8307296 4996.60061 12 13 1113.690642 4827.118508 9 23 8993669.995 79047.15208 2 10

170.3327281 6126.977164 9 13 1174.449135 5695.412666 5 23 11871687.47 18732.8455 2 4

232.1005939 6637.642234 13 17 1195.978328 7483.657955 13 28 30409088.14 136077.6301 5 12

290.2146555 7911.276275 2 17 1301.489531 10578.38219 2 5

296.8402391 4945.555258 4 5 1311.401671 6594.93411 9 20

325.4523876 8418.17453 9 10 1439.125878 11856.99685 4 23

363.8392941 5104.209008 4 12 1535.067893 12324.67145 4 28

385.1277835 4965.702734 17 23 1546.631355 31170.57609 5 10

438.1817142 11246.94101 10 20 1951.496701 17137.00046 10 23

475.9348509 7394.381533 4 9 2085.967763 14195.61269 2 12

516.9469372 7737.74391 5 17 2572.619355 35910.4152 10 12

538.2336213 6817.570897 2 9 2603.736773 19091.84932 5 28

570.4060061 4572.721409 5 20 3052.763591 11110.24696 2 23

645.3371516 4511.492571 12 20 3117.807126 17153.88593 10 13

24

8.1.3. Data Set 1: Three Satellite Errors and DOP
Three Satellite Errors. Exp_weight 0.01. Scale = 1000. Data Set 1

Sorted Error of Three Satellite Navigation Solution for Data Set 1

Error (m) DOP SV IDs Error (m) DOP SV IDs Error (m) DOP SV IDs

10.84525688
1.98776926

7 2 26 29
43.6260010

3
15.2803333

7 4 5 12 135.530533
3.59116309

3 7 12 29

17.60784594
2.10621122

6 2 5 29
43.7937267

1
1.94420399

9 25 26 29
137.059229

6
3.84310930

6 7 10 12

17.74141548
8.91993402

8 2 10 24
43.9926666

8
2.01929954

3 2 25 29
145.428260

9
3.71351555

4 7 12 24

18.02369726
1.90842569

2 2 24 26
44.2561707

1
2.69587222

2 10 25 27 146.597212
16.6251779

4 5 12 26

18.06259196
4.42114925

4 2 5 10
44.6095827

9
6.56950653

3 5 10 12
153.875084

2
7.91751316

6 7 25 30

18.19222758
2.66588333

5 10 24 26
45.2866043

9
1.81727787

2 10 26 27
155.002567

1
4.27522667

3 2 5 27

18.33771403
2.10009024

8 5 26 29
46.4382006

5
2.25462504

4 4 24 25
155.003824

9
22.8097699

9 5 12 30

18.65094362
2.81387661

4 2 10 26 46.6181817
2.09091243

4 4 12 24
163.264940

8
6.21026891

9 7 27 30

19.04487127 2.39075797 5 10 24
47.2057581

1
2.29192926

2 10 24 25
163.745861

8
4.33332869

8 25 27 30

19.3869421
2.51813715

2 5 10 29
49.6111079

5
2.94253214

3 2 25 27
164.147807

4
4.30684806

7 12 27 30

19.64420933
2.10237335

1 2 5 24
49.9597856

1
2.26951486

1 2 26 27
164.162405

8
15.6253149

4 24 25 29

19.76602672
2.28760503

4 5 24 26
50.7978806

3
8.12807322

2 7 25 26
164.303043

5
4.91267236

3 5 27 30

20.44511541
3.24756703

7 10 26 29
50.8970345

4 2.68124469 4 7 24
169.731843

6
16.4459706

2 5 12 27

20.77340095
2.37206430

3 2 4 26
51.0250285

9 1.99724137 2 24 25
174.878259

2
5.05795465

1 5 25 26

21.37983645
2.67482329

6 24 26 30
51.2070365

5
2.97190467

1 2 12 26
177.580386

2
5.50846949

5 5 7 24

21.77819501
3.19868480

5 10 24 30
51.3655079

5 5.37469622 7 10 27
178.606604

6
5.56203336

6 5 7 29

22.72870016
4.88466385

2 12 29 30
52.3148585

6
2.01189674

5 24 25 26
179.184606

7
5.19284634

6 4 5 25

23.01336852
5.63265588

1 5 26 30
52.4979792

8
2.47726836

6 2 7 29
185.736811

3
5.19943918

2 2 7 12

23.33726658
3.96973470

2 5 10 30
52.7564179

3
1.87055270

6 26 27 29
186.326450

8
4.81536898

2 7 12 30

23.45899473

2.29101510

7 26 29 30

52.8602659

5

1.98051500

8 7 24 26

186.494938

5

4.38990220

1 26 27 30

23.54825104
3.07273370

6 2 24 30
53.5336881

3
3.04582688

9 4 24 30
188.863066

9
5.27940285

1 2 7 30

23.98193062
1.86213185

1 10 26 30
53.5675084

3
6.97781897

1 7 24 25
189.571669

6
19.5686442

9 2 4 29

24.28666625
1.92082069

4 4 10 26
55.0071375

4
3.38655124

1 25 27 29
191.455121

7
6.19184563

1 5 7 30

24.46145812
1.95155846

8 5 10 26
55.0084258

4 9.35304789 24 26 29
198.783560

8
12.0708731

1 5 7 12

24.67190867
2.74091634

4 10 12 30
55.0727057

8
3.81570511

7 4 12 30
200.913025

9 5.75420702 24 27 30

24.76186968
3.71878471

2 2 5 30
56.3638428

9
2.90896731

8 4 29 30
210.730189

8
31.4022206

1 7 25 27

25.17762283 3.53865012 2 10 12
56.8900562

9
2.71361665

6 7 10 24
212.449017

8
6.00593607

4 2 5 25

25.18092403
1.91025496

4 2 12 29
59.4785734

8
5.71809337

3 2 7 27
216.124982

8
5.73294209

6 5 25 27

25.19765939
2.21617531

3 10 12 24
59.7447155

5
3.50575980

1 2 25 26
216.675579

4
6.93981210

6 5 7 25

25.27717116
2.39390361

5 10 12 29
60.2256471

9
12.3679587

4 12 24 29
218.017630

4
12.4728611

5 5 7 27

25.57756092
2.65074252

1 2 12 30
60.5422624

2
4.55740029

4 4 5 30
218.487078

3
29.9002991

3 4 24 29

25.86206211
7.27754080

2 2 10 29
61.2129603

9
9.22752325

6 5 12 29 226.249897
5.99990726

7 27 29 30

26.26423778 1.96754029 4 26 29
62.1651218

1
3.46798657

4 10 27 29 229.981878
7.03338916

8 7 10 30

26.38514746
1.88959209

7 2 12 24
63.6746755

7
3.60492361

3 2 10 25
237.859588

7
8.40034962

8 5 12 25

27.00340727
1.96552249

8 2 26 30
65.9541723

4
2.49148897

4 2 7 24
237.912191

9
6.29981278

8 12 25 30

27.91825618
10.2138288

6 5 24 30
67.1685626

8 1.99871521 24 26 27
238.766075

3
22.3549050

9 4 7 27

29.02481419
3.12837253

2 10 29 30
68.6455067

7
6.02828133

8 7 27 29
240.360326

6
7.45647719

4 7 12 25

29.58430333
2.45748700

5 2 5 26
73.6808437

8
3.60675356

8 24 25 27 240.955859
6.70615773

1 12 25 27

30.06903663
2.94889601

4 2 29 30
74.3861514

3
3.90930485

6 4 10 30
246.838893

8 6.72678129 4 27 30

25

30.77670427
6.10692977

8 12 24 30
77.3295671

4
4.33916259

7 2 4 27
257.930558

1
8.31258127

1 5 7 10

32.38213484
2.39556235

9 12 24 26
78.4063952

9
14.5483452

3 5 24 29
258.003624

1
6.69577021

7 12 24 25

32.80587155
2.23178137

7 12 26 29
79.1139974

8
10.4955711

6 5 12 24
259.541032

3
21.1841985

2 7 12 27

33.07572305
6.81729084

2 4 10 29
81.2282543

2
3.85123933

1 4 27 29 273.581746
6.96540428

1 4 12 25

34.55066815
2.26877356

8 4 5 10
82.7134423

1
4.29705487

9 2 4 30
275.546956

1
23.5533184

6 7 24 29

35.12613568
10.5160544

6 2 10 30
86.5917381

9 6.21098439 7 24 27
278.368738

4
7.12827205

3 12 25 29

36.10520146
1.86802384

8 7 10 26
88.0308583

3
4.12080618

5 4 10 27 279.678803
12.4880863

8 5 25 30

36.71429883
2.16477379

9 4 5 29
90.0655908

8
3.89980404

9 4 24 27
289.555493

6
12.0196715

4 2 10 27

37.03539944
1.98476183

1 4 10 12
91.4555700

2
15.9759613

6 10 24 29 307.509487
7.76505841

2 12 25 26

37.77699205
2.16311556

1 10 12 26
91.6159989

4 2.65934959 2 25 30
310.788658

8
9.28654071

4 5 10 25

37.9774722
7.96538593

5 5 29 30
94.8325388

3
3.61711568

7 10 24 27
323.866183

6
10.0528157

2 25 29 30

38.05139047
2.09103694

1 4 24 26
96.7559152

9
2.52481733

5 10 12 27
325.905866

4
21.9269089

5 4 5 26

38.50407689
2.72006841

7 2 4 5
97.4491059

5
20.4309562

1 24 29 30
367.313931

8
11.5187455

3 5 7 26

38.96492072
4.46796280

5 7 10 25 98.216833
3.55203863

2 2 27 29
379.951537

2
12.1869851

7 4 5 7

38.98935608
11.8555942

7 4 7 25
98.3629754

2 5.53627355 2 7 10 442.874611 16.5625968 24 25 30

39.11381005
2.98037927

3 2 4 7
98.9995379

2
3.05609005

5 10 25 30 466.780459
14.9265843

7 2 5 7

39.40703279 2.44589418 10 25 29
100.909189

8 7.73289864 4 25 26 502.679781
61.0093938

2 4 26 27

39.43440431
2.16961572

5 4 25 29 102.199191
2.93549569

4 25 26 30
548.624742

9
32.4111924

9 4 7 26

39.47127608 2.46057269 2 4 12 102.458774
3.07897672

6 4 25 30
552.498006

5
20.9162896

8 7 24 30

39.80678823
4.62834293

7 2 7 25
103.090593

8
4.58702410

7 4 26 30
582.996706

4
21.0273264

9 5 24 25

39.80958967
2.47174525

4 2 4 25
106.506791

8
9.44440208

7 4 10 24 590.795056
37.9880491

6 2 4 24

40.00908711
6.36082530

1 7 25 29
106.859748

6
2.58741443

3 12 27 29
847.590866

1
22.5118435

5 10 12 25

40.04786357
2.02146494

9 4 10 25
116.824052

9
3.06686484

8 2 12 27
912.150556

2
27.1974235

8 5 26 27

40.23549842
2.51847339

6 2 7 26
118.982182

1
2.71698770

8 12 24 27
963.134989

6
40.7615214

6 4 12 27

40.37037541
1.99014989

1 4 12 29
120.086040

1
3.19234615

3 5 27 29 988.091979
35.7477884

3 5 25 29

40.37723304
4.74390257

2 12 26 30
123.118070

4
3.48114158

8 5 10 27
1036.34004

1
36.8452950

3 7 29 30

40.76394215
2.77569541

3 7 10 29
124.547684

2
10.4713058

1 4 25 27
1115.44726

1
26.9192979

6 10 27 30

40.88935599
2.11965353

3 10 25 26
127.008969

8
3.70291969

2 2 24 27
1221.61968

1 33.5446093 4 7 12

40.89979585
1.87021540

3 7 26 29
128.421662

5
3.28062732

9 5 24 27
1335.61777

3
67.3551525

2 24 27 29

42.0968319
2.61474652

8 4 7 29
129.018417

9
19.1500071

4 7 26 27
1336.88200

8
30.1726620

8 2 12 25

42.66267156
6.98443192

2 2 5 12
130.066632

7
3.99137864

3 4 7 30
1579.96239

3 55.6508773 7 12 26

42.84943446
2.25873384

7 4 5 24
130.667940

2 15.4479283 2 4 10 2311.92835
40.0022983

3 12 26 27

43.42998364
2.61874381

7 4 7 10
131.882517

7
3.69601121

1 7 26 30
3199.13573

7
103.670051

6 4 12 26

43.43706432
6.13906237

5 25 26 27
133.198797

4
24.7850313

8 2 24 29
17091.0515

5
108.073447

7 4 5 27

117839.382
2

414.732828
2 2 27 30

8.1.4. Data Set 2: Three Satellite Errors and DOP
 Three Satellite Errors, exp_weight = 0.01, Scale = 1000, Data Set 2.

Sorted Three Satellite Solution Errors for Data Set 2

Error (m) SV IDs Error (m) SV IDs Error (m) SV IDs

9.178435793 2.573795605 2 12 17 38.91770932 3.778989842 2 4 13 75.10388524 2.607276288 2 9 10

26

11.58472983 2.768344644 2 4 12 39.11070504 2.131398734 4 10 12 76.21034309 7.851332444 5 10 12

11.81763342 1.932925636 12 17 20 39.12978034 2.465029137 5 17 28 76.47497556 3.294013093 10 17 23

11.91042718 2.270516752 4 12 20 41.47255895 2.275141054 4 10 17 79.51168325 13.62608005 2 4 23

13.07586416 2.262358768 2 5 17 41.49290295 3.092722968 4 5 28 82.2356185 2.587705154 2 9 28

14.5845833 2.037288001 5 17 20 43.56287473 3.40294243 10 12 28 83.30894247 3.085166554 2 10 20

14.64400884 2.42060794 2 4 5 44.07001281 2.634573965 5 20 28 84.90459018 3.922688921 5 13 17

14.81924019 1.998043333 4 5 20 44.24040246 2.094360165 2 10 13 85.79077928 2.831704353 4 9 20

15.0820226 2.532642357 2 5 20 45.25940152 1.754981194 4 10 13 89.9534222 3.108017863 10 12 20

15.97086984 5.182626092 2 4 20 45.50239233 1.99100147 4 5 10 91.48999316 3.738296071 4 10 20

16.5609079 3.396627973 2 12 20 45.76593008 4.102561359 5 10 28 95.55856782 7.545650128 5 13 23

17.10659592 2.149187463 2 4 28 46.02002327 1.857563901 5 10 17 97.26023046 4.757578339 2 5 10

17.87777453 1.873449387 2 17 28 46.89352065 4.889510852 12 20 23 100.177422 4.768482728 5 13 20

19.48731638 8.757861457 20 23 28 47.07872055 2.490037322 2 5 13 103.5150037 2.864641713 5 10 13

19.70189052 2.153001952 2 17 20 47.65527271 2.633509035 4 10 28 105.7118508 5.38323375 12 13 17

20.1423175 2.022589427 4 20 28 48.37918405 3.111824996 12 13 20 106.1236037 6.409590286 10 20 23

21.04744247 1.773716464 4 23 28 48.53258474 2.710969598 2 4 10 106.3812738 3.374535102 5 10 20

21.14248452 6.477770868 13 20 28 48.82618302 3.293081755 2 10 28 106.659548 2.873113676 5 10 23

21.89343 3.064817777 4 12 23 49.32243769 5.125028472 12 13 23 107.5865097 7.904395919 5 20 23

22.09394935 2.399307347 4 17 20 51.40426182 2.603130971 5 23 28 108.3626374 5.30238589 10 13 20

22.47684699 2.88445247 4 12 28 51.45046619 1.916713307 4 9 10 110.1970741 5.331687143 2 17 23

22.54666972 2.914251 4 20 23 51.93560446 2.45301008 10 13 17 111.9571711 3.394775079 2 9 20

23.21676668 1.896842212 4 13 28 52.23600533 4.071258212 17 20 28 114.1638412 3.371246809 9 20 28

23.90395575 1.989428405 2 20 28 52.63360926 1.743997667 4 9 28 120.0652788 12.11967594 10 13 23

24.58002652 2.066179894 4 13 20 53.00748476 1.981100354 4 10 23 120.1638058 8.677030735 2 10 12

24.69708846 3.918481986 2 4 17 53.30973002 3.357930295 5 9 28 133.1820418 10.07419103 2 13 17

24.82522748 8.462270949 4 5 17 53.87513609 2.142424008 2 10 23 142.7004319 3.843878938 9 10 20

25.74465623 13.91801679 13 23 28 54.36736463 11.15918591 2 12 28 161.2969048 18.21439864 5 12 28

25.95200357 3.742637951 4 13 23 54.45324039 3.492241856 4 17 23 164.2348298 3.70111153 9 12 13

26.17915827 2.192880586 12 17 28 54.53336281 12.86737723 2 5 12 177.6953206 3.914818524 5 9 13

26.43390834 2.693590265 2 12 23 54.96445508 3.90584466 10 17 28 184.6382803 4.061918254 4 9 13

27.09199907 6.129273387 5 12 20 55.14816821 5.92697703 4 12 13 187.5343549 4.332480195 9 23 28

27.20592429 2.373551698 4 5 23 55.49127077 2.212382851 9 10 17 197.06366 4.415892923 9 10 23

27.56567406 1.976320463 2 23 28 55.52844879 5.248032758 5 9 10 200.2138496 4.298084465 9 13 20

28.35069959 3.465642999 17 20 23 55.53584576 2.091361946 9 17 28 207.2074413 9.813646875 2 4 9

28.38204248 2.20007431 12 20 28 55.98184357 11.10255798 9 10 28 207.5919756 5.219488748 9 13 23

29.28148644 2.270804299 2 5 23 56.0401304 2.310877314 4 5 9 216.0518864 5.761588266 9 20 23

30.25628442 3.065615147 2 20 23 56.68708658 3.594646404 4 5 13 222.9320148 7.528767057 10 20 28

32.03439956 2.149481177 2 13 20 57.90716801 6.566831968 5 12 13 232.1271155 5.767091789 9 13 17

32.21909412 3.652489705 2 13 23 58.65464314 2.557440714 9 12 28 233.9326286 6.207187575 9 10 13

32.37260448 2.121030143 12 23 28 59.91505378 2.760846913 5 13 28 242.7738679 6.031825296 5 9 23

33.29092168 2.553881605 13 17 20 59.92433448 2.235414849 5 9 17 250.3210783 9.52601211 4 13 17

33.36043609 3.87629052 13 17 23 60.52941431 10.57796372 4 5 12 273.1228024 42.93165134 2 5 28

33.58504212 2.327494177 2 13 28 61.44363631 3.389249362 9 10 12 292.1093094 5.961934813 2 9 13

33.78779119 2.832218677 4 17 28 63.5722949 75.03041788 13 20 23 314.1023465 6.943053162 9 13 28

33.97235479 2.505338276 13 17 28 66.04569876 2.266807921 10 12 13 324.3580407 7.226913216 9 17 23

34.51854572 2.545750924 12 17 23 66.91070939 6.185903909 5 9 12 350.482272 8.690418262 9 12 23

34.7761822 2.390593853 5 17 23 71.69173927 22.03892874 4 12 17 398.3240468 21.38685107 5 9 20

35.68083545 6.040621868 5 12 23 72.01784115 2.9794434 4 9 12 452.9111499 22.02538858 10 17 20

35.89631043 2.727982374 2 12 13 72.04202176 2.5113681 9 12 17 464.6645548 657.268519 10 13 28

35.95777501 1.863898877 2 10 17 72.07254781 3.889493428 4 9 17 580.4962899 15.35968589 2 9 23

36.18601758 2.686353067 17 23 28 72.33876749 3.058582858 2 9 12 728.3770172 11.99279536 2 9 17

36.59032709 8.720183178 5 12 17 72.69109415 2.73734974 2 5 9 831.9349901 14.74957244 9 12 20

37.77338823 2.286865942 12 13 28 74.2737018 2.35984228 10 12 23 1505.693861 36.64726224 4 9 23

38.72553192 1.759904198 10 12 17 74.85838772 2.393843116 9 17 20 5101.528905 20.93877071 10 23 28

27

9. Appendix Code

9.1. calcpropdelays.m
% calculates the per-satellite, per-time propagation delays for a set of

% data.

% Input:

% rx_pos - receiver position in ECEF

% sats_pos - satellite positions

% sprop - signal propagation speed

function propagation_delays = calcpropdelays(rx_pos, sats_pos, sprop)

% update the position and velocity based on propagation time that the

% signal would experience getting to the current location

satellites = (size(sats_pos,2)-1)/4;

propagation_delays = [];

for sat=1:satellites

 pos_diff = [sats_pos(:,sat*4-1) - rx_pos(1), sats_pos(:,sat*4+0) - rx_pos(2), sats_pos(:,sat*4+1) -

rx_pos(3)];

 pos_diff = sqrt(sum(pos_diff.^2,2)) ./ sprop;

 propagation_delays = [propagation_delays pos_diff];

end

end

9.2. constant.m (written by Dr. Paul Kintner)
% constant.m (actual file name: constant.m)

%

% this GPS utility defines physical constants to be used in the

% GPS functions and utilities

%

% constants defined:

% 'mu' : G*Me, the "gravitational constant" for orbital motion

% about the Earth

% 'AA' : the semi-major axis of the reference ellipsoid (WGS-84)

% 'BB' : the semi-minor axis of the reference ellipsoid (WGS-84)

% 'esquare' : the square of the Earth's orbital eccentricity

% 'OmegaE' : the sidereal rotation rate of the Earth (WGS-84)

% 'c' : the speed of light (meters/second)

% 'degrad' : a constant used for converting degrees to radians

% 'leapSeconds' : the number of leap seconds currently for the

% GPS system (seconds)

% 'f0' : the fundamental frequency for the GPS system (Hertz)

% 'f' : the L1 carrier frequency (Hertz)

% 'lambda' : the L1 carrier wave length (meters)

%

 muearth = 398600.5e9; % meters^3/second^2

 AA = 6378137.00000; % meters

 BB = 6356752.31425; % meters

 esquare=(AA^2 - BB^2) / AA^2;

 OmegaE = 7.2921151467e-5; % radians/second

 c = 299792458; % meters/second

 degrad = pi/180.0;

 leapSeconds = 14; % seconds

 f0_freq = 10.23e6; % Hertz

 L1_freq = 154 * f0_freq; % Hertz

 L1_lambda = c / L1_freq; % meters

9.3. dopplerradialvel.m
% converts a Doppler matrix to the set of relative raidal velocities

% Note that this solution doesn't include the NCO, which has to be solved

% for during iteration

% Input:

% sprop - the speed of propogation of each satellite's signal (rows)

% if this is a scalar, it is multipled as necessary

% set to the speed of light if unsure

% dopp - [GPStimes [SVID1 DOPPLERS] [SVID2 DOPPLERS] ...]

% trans_freq - (scalar) the transmitting frequency of the signal

% Output:

28

% [GPStimes [SVID1 relative radial velocity] [SVID2 relradvel] ...]

%

% For each satellite, the returned relative radial velocity is TRULY

% calculated by this formula:

% |vrad| = (fT - fR + NCO) * sprop / trans_freq

% Where -(fT - fR) = dopp. Note that this formula DOESNT correct for the

% clock offset

function [relradvel] = dopplerradialvel(sprop, dopp, trans_freq)

% find the number of satellites

satellites = (size(dopp,2)-1)/2;

% format the speed of propogation

if (size(sprop,1) == 1)

 sprop = ones(satellites,1) * sprop;

else

 if (size(sprop,1) ~= satellites)

 printf('A vector sprop must have the same # of rows as satellites');

 return;

 end

end

% copy GPS times

relradvel = dopp(:,1);

% copy each satellite

for sat = 1:satellites

 relradvel = [relradvel dopp(:,2*sat) (-(dopp(:,2*sat+1)) .* sprop(sat) ./ trans_freq)];

end

return;

end

9.4. dopsoln.m
%NOTES ON DOP: sigmaP ~ 10^-2 * 300 meters

%sigmaD ~ 10^-2 * lamda_l1

clear all;

constant;

ephem = load('ephem.asc');

% all satellites with data: 2 4 5 7 10 12 24 25 26 27 29 30

fprintf('\nEnter in satellite numbers in the form [sat1# sat2#...satn#] (minimum of 2)\n Available

Satellites: ');

fprintf('%d ',ephem(:,1));

fprintf('\n ');

SV_ids = input('');

% read in all of the satellite data

[ephem pseudo dopp] = loaddata(SV_ids);

[pos vel] = ephemposvel(ephem, pseudo(:,1));

[vrad] = dopplerradialvel(c, dopp, L1_freq);

% guess at the receiver position

%rx = [42.444290 -76.482126 239.47]; % a very exact guess

rx = [42 -76 220]; % an ok guess

%rx = [35 -70 0]; % a bad guess

rx_pos = ecef(rx);

rx_vel = [0 0 0]; % stationary receiver

[pos vel] = ephemposvel(ephem, pseudo(:,1), calcpropdelays(rx_pos,pos,c));

% Esimate the receiver clock offset using the radial velocity mismatch

mismatches = radialvelocitymismatch(rx_pos, rx_vel, surfacevelocity(rx_pos, rx), pos, vel, vrad);

rx_cdr = 0;%mean(mean(mismatches));

% Define the functional differencing matrix (F) and the design matrix (A)

% using parameters with MATLAB's symbolic math.

syms cx cy cz cdr; % receiver location and clock offset

syms cvx cvy cvz; % receiver relative velocity (surface + mobile)

syms sx sy sz; % satellite location

syms svx svy svz; % satellite velocity x/y/z

syms svrad; % satellite radial velocity

29

syms P; % pseudorange

syms nco;

syms scale;

syms p pnorm v vnrom rho;

scale = 1000;

% the Pseudorange equation: rho - (pseudorange + cdr) = 0

% the Doppler equation: dot(rho_hat, sat_vel - rx_vel) - (vrad+cdr/L1_lambda) = 0

%distance from current guess to satellite

 rho = sqrt((cx-sx).^2+(cy-sy).^2+(cz-sz).^2);

%setting up the cross products

 p = [(sx-cx) (sy-cy) (sz-cz)];

 pnorm = p / rho;

 v = [svx-cvx svy-cvy svz-cvz];

 vnorm = v / rho;

%function vector

F = [rho - (P + cdr);

 ((sx-cx)*(svx-cvx) + (sy-cy)*(svy-cvy) + (sz-cz)*(svz-cvz)) / rho - (svrad - scale*cdr);

];

%A matrix

A = [-(sx-cx)/rho -(sy-cy)/rho -(sz-cz)/rho -1;

 cross(pnorm, cross(pnorm, vnorm)) scale;

];

times = size(pseudo,1); % number of times to calculate receiver location

rx_locations = []; % tracks location of the receiver over time

rx_cdrs = [];

%Input the Times

fprintf('\nEnter initial time and end time as [starttime endtime]\n Maximum endtime: ');

fprintf('%d', times);

fprintf('\n');

t = input('');

tstart = t(1); tend = t(2);

error = [];

% repeat for all of the times that we have

 for time=tstart:tend

 satellites = size(SV_ids,2);

 pos_convergence = [];

 %feval_convergence = [];

 %initialization

 delta = 100;

 iterations = 0;

 while delta > 1e-6 && iterations < 10

 difference = [];

 design_matrix = [];

 cx = rx_pos(1); cy = rx_pos(2); cz = rx_pos(3);

 cdr = rx_cdr;

 rx_cdrs = [rx_cdrs rx_cdr];

 relvel = rx_vel + surfacevelocity(rx_pos, rx);

 cvx = relvel(1); cvy = relvel(2); cvz = relvel(3);

 %A MATRIX CONSTRUCTION

 for sat=1:satellites

 %find satellite positions and velocities

 sat_pos = pos(time,[sat*4-1:sat*4+1]);

 sat_vel = vel(time,[sat*4-1:sat*4+1]);

 sx = sat_pos(1); sy = sat_pos(2); sz = sat_pos(3);

 svx = sat_vel(1); svy = sat_vel(2); svz = sat_vel(3);

 svrad = vrad(time,sat*2+1);

 P = pseudo(time,sat*2+1);

 %setting up the cross products

 rho = sqrt((cx-sx).^2+(cy-sy).^2+(cz-sz).^2);

 p = [(sx-cx) (sy-cy) (sz-cz)];

 pnorm = p / rho;

 v = [svx-cvx svy-cvy svz-cvz];

 vnorm = v / rho;

 difference = [difference; eval(F)];

30

 design_matrix = [design_matrix; eval(A)];

 end %end of A matrix construction

 %%feval_convergence = [feval_convergence difference];

 %delta vector

 delta_pos = -inv(design_matrix'*design_matrix)*design_matrix'*difference;

 pos_convergence = [pos_convergence norm(delta_pos(1:3))];

 %increment our guess by delta vector

 rx_pos = rx_pos + delta_pos(1:3)';

 %set receiver offset

 rx_cdr = delta_pos(4);

 %convert to lat /long

 rx = latlong(rx_pos);

 %find magnitude of our correction term

 delta = norm(delta_pos(1:3));

 iterations = iterations + 1;

 end %end while loop for convergence

 %%plot(1:size(feval_convergence,2),(feval_convergence));

 s = size(rx_locations,2);

 exp_weight = 0.1;

 if (s>1 && time > tstart)

 rx_pos = rx_pos * exp_weight + (1-exp_weight)*rx_locations(:,s)';

 end

 rx_locations = [rx_locations rx_pos'];

 error = [error norm(ecef([42.444007 -76.482229 236.548])-[rx_pos(1) rx_pos(2) rx_pos(3)])];

 % update the position and velocity based on propagation time that the

 % signal would experience getting to the current location

 [pos vel] = ephemposvel(ephem, pseudo(:,1), calcpropdelays(rx_pos,pos,c));

 end%end for loop for times

% calculate the accuracy and precision of the locations

accuracy_meters = locdiffmag(rx_locations, ecef([42.444007 -76.482229 236.548]))

precision_meters = locdiffmag(rx_locations, mean(rx_locations,2)')

%plot([1:length(error)], error);

% plot the receiver evolution over time

%rx_locations = locdiff(rx_locations, mean(rx_locations,2));

%figure

%Dot denotes initial nav solution, * marks final nav solution

%%figure

%plot3(rx_locations(1,1),rx_locations(2,1),rx_locations(3,1),'o',rx_locations(1,tend-

tstart),rx_locations(2,tend-tstart),rx_locations(3,tend-

tstart),'m*',rx_locations(1,:),rx_locations(2,:),rx_locations(3,:));

%xlabel('xerror');

%ylabel('yerror');

%zlabel('zerror');

%plot3(rx_locations(1,:),rx_locations(2,:),rx_locations(3,:));

9.5. dopsolncombos.m
%NOTES ON DOP: sigmaP ~ 10^-2 * 300 meters

%sigmaD ~ 10^-2 * lamda_l1

clear all;

constant;

data = input('Enter which data set to use: 1 or 2 \n');

if(data == 1)

 ephem = load('ephem.asc');

elseif(data == 2)

 ephem = load('ephem_2.asc');

end

% all satellites with data: 2 4 5 7 10 12 24 25 26 27 29 30

allsat = ephem(:,1)';

%allsat = [2 4 5 9 10 12 13 17 20 23 28];

exp_weight = input('\nEnter Exponential Weighting\n');

cutoff = input('\nEnter cutoff\n');

31

%Create all the satellite combinations

SV_id_indices = [];

for a1 = 1:length(allsat)

 for b1 = a1+1:length(allsat)

 for c1 = b1 + 1:length(allsat)

 %for d1 = c1 + 1:length(allsat)

 SV_id_indices = [SV_id_indices; a1 b1 c1];

 %end

 end

 end

end

%Load the Data

if(data == 1)

 ephemData = load('ephem.asc');

 obsData = load('obs.asc');

 doppData = load('obsdopp.asc');

elseif(data == 2)

 ephemData = load('ephem_2.asc');

 obsData = load('obs_2.asc');

 doppData = load('obsdopp_2.asc');

end

[ephem, pseudo, dopp] = formatData(ephemData, obsData, doppData, allsat);

%Initialize

cerror = [];

bad = [];

DOP = [];

good = [];

 % guess at the receiver position

 %rx = [42.444290 -76.482126 239.47]; % a very exact guess

 %rx = [42 -76 220]; % an ok guess

 rx = [20 -70 0]; % a bad guess

 rx_guess = rx;

 rx_pos = ecef(rx);

 rx_vel = [0 0 0]; % stationary receiver

 % read in all of the satellite data

 [pos vel] = ephemposvel(ephem, pseudo(:,1));

 [vrad] = dopplerradialvel(c, dopp, L1_freq);

for combo_num = 1:size(SV_id_indices,1)

 SV_id_array = SV_id_indices(combo_num,:);

 %displays the satellite combination that is currently running

 allsat(SV_id_array)

 % Esimate the receiver clock offset using the radial velocity mismatch

 rx_cdr = 0;%mean(mean(mismatches));

 %arbitrary choice of scaling factor...has to be >100

 scale = 1000;

 times = size(pseudo,1); % number of times to calculate receiver location

 rx_locations = []; % tracks location of the receiver over time

 error = [];

 % repeat for all of the times that we have

 for time_index=1:10

 satellites = size(SV_id_array,2);

 % get the current time

 time = pseudo(time_index,1);

 % pull out the satellite measured radial velocities and pseudoranges at

 % the current time

 time_pseudo = pseudo(time_index,:);

 time_vrad = vrad(time_index,:);

 % by setting this each loop, we can be sure that the solution of one

 % time doesn't affect the solutions at other times (this is an

 % asynchronous method, after all)

 rx_cdr = 0;

32

 rx = rx_guess;

 rx_pos = ecef(rx_guess);

 %initialization

 delta = 1;

 iterations = 0;

 while delta > 1e-6 && iterations < 10

 % update the position and velocity based on propagation time that the

 % signal would experience getting to the current location

 [pos vel] = ephemposvel(ephem, time);

 [pos vel] = ephemposvel(ephem, time, calcpropdelays(rx_pos,pos,c));

 difference = [];

 design_matrix = [];

 relvel = rx_vel + surfacevelocity(rx_pos, rx);

 %A MATRIX CONSTRUCTION

 for sat=1:satellites

 sat_index = SV_id_array(sat);

 %find satellite positions and velocities sat_pos = time_pos([sat_index*4-

1:sat_index*4+1]);

 sat_pos = pos([sat_index*4-1:sat_index*4+1]);

 sat_vel = vel([sat_index*4-1:sat_index*4+1]);

 sat_rvel = time_vrad(sat_index*2+1);

 sat_pseudo = time_pseudo(sat_index*2+1);

 rho = sat_pos - rx_pos;

 rho_mag = norm(rho);

 rho_norm = rho ./ rho_mag;

 vnorm = (sat_vel - relvel) ./ rho_mag;

 difference_contribution = [

 rho_mag - (sat_pseudo + rx_cdr);

 dot(sat_pos-rx_pos,sat_vel-relvel) / rho_mag - (sat_rvel -

scale*rx_cdr);

];

 design_matrix_contribution = [

 -rho_norm(1) -rho_norm(2) -rho_norm(3) -1;

 cross(rho_norm, cross(rho_norm, vnorm)) scale;

];

 % add this satellite's contribution to the difference

 % evaluation and design matrix matrices

 difference = [difference; difference_contribution];

 design_matrix = [design_matrix; design_matrix_contribution];

 end %end of A matrix construction

 %delta vector

 delta_pos = -inv(design_matrix'*design_matrix)*design_matrix'*difference;

 %increment our guess by delta vector

 rx_pos = rx_pos + delta_pos(1:3)';

 %set receiver offset

 rx_cdr = delta_pos(4);

 %convert to lat /long

 rx = latlong(rx_pos);

 %find magnitude of our correction term

 delta = norm(delta_pos(1:3));

 iterations = iterations + 1;

 end %end while loop for convergence

 s = size(rx_locations,2);

 if (s>1 && time_index > 1)

 rx_pos = rx_pos * exp_weight + (1-exp_weight)*rx_locations(:,s)';

 end

 rx_locations = [rx_locations rx_pos'];

 end%end for loop for times

33

 % calculate the accuracy and precision of the locations

 accuracy_meters = locdiffmag(rx_locations, ecef([42.444007 -76.482229 236.548]));

 %Update the DOP and errors - Note that the cutoff is used

 %only for plotting purposes, all errors are saved for correlation

 %computation

 Q = inv(design_matrix'*design_matrix);

 if(accuracy_meters < cutoff)

 cerror = [cerror accuracy_meters];

 DOP = [DOP sqrt(trace(Q))];

 good = [good; accuracy_meters sqrt(trace(Q)) allsat(SV_id_array)];

 else

 %bad satellite combinations are saved

 bad = [bad; allsat(SV_id_array)];

 end

end%end for loop for satellite combinations

%Plot the good combinations

subplot(2,1,1), plot(1:length(cerror), cerror), xlabel('Combo #'), ylabel('Error (m)');

subplot(2,1,2), plot(1:length(cerror), DOP), xlabel('Combo #'), ylabel('DOP');

%DATA ANALYSIS SECTION

cov = 1/length(DOP) * (cerror - mean(cerror))*(DOP - mean(DOP))';

corr_coeff = cov / (sqrt(var(cerror)) * sqrt(var(DOP)));

%Rank and Sort the satellite combinations by error

[ranked index] = sort(good(:,1));

ranked = [ranked good(index,2:size(SV_id_indices,2)+2)]

9.6. ecef.m (written by Dr. Paul Kintner)
% checked 8/2006

% ecef.m (actual file name: ecef.m)

%

% this GPS utility converts a WGS-84 latitude-longitude-altitude

% position into ECEF coordinates

%

% input: 'location' vector which contains a position specified by

% latitude (degrees), longitude (degrees), and altitude (meters)

% [latitude longitude altitude]

%

% output: 'ECEFxyz' vector which contains the same position

% specified by ECEF coordinates (meters)

% [ECEFx ECEFy ECEFz]

%

function ECEFxyz = ecef(location);

% define physical constants

 constant;

% get latitude-longitude-altitude location to be converted to ECEF coordinates

 latdeg = location(1);

 londeg = location(2);

 alt = location(3);

% convert to radians

 lat = latdeg*degrad; % convert latitude to radians

 lon = londeg*degrad; % convert longitude to radians

% computes the ECEF coordinates

 NN = (AA^4/((BB^2)*sin(lat)^2 + (AA^2)*cos(lat)^2))^(1/2);

 ECEFx = (NN+alt)*cos(lat)*cos(lon); % meters

 ECEFy = (NN+alt)*cos(lat)*sin(lon); % meters

 ECEFz = ((BB^2/AA^2)*NN + alt)*sin(lat); % meters

% return location in ECEF coordinates

 ECEFxyz = [ECEFx ECEFy ECEFz];

 return

9.7. ephemposvel.m (based on findsat.m by Dr. Paul Kintner)
% Finds the positions and velocities of the satellites given in the input

% arguments. Output coordinates are in ECEF, and output velocity is

% in a Earth-rotation-adjusted ECEF frame.

% Input:

% ephem - standard ephemerides

34

% t - GPS times (column) at which to find position/velocitiy

% prop_delay - propagation delays for each satellite at each timestep

% Output:

% pos - [GPSTimes [SVID1 X Y Z] [SVID2 X Y Z] ...]

% vel - [GPSTimes [SVID1 VX VY VZ] [SVID2 VX VY VZ] ...]

function [pos, vel] = ephemposvel(ephem, t, prop_delay)

 constant; % load GPS constants

 satellites = size(ephem, 1);

 times = size(t,1);

 pos = [t];

 vel = [t];

 for sat=1:satellites

 % set up the satellite identifiers

 SVs = ones(times,1) .* ephem(sat,1);

 pos = [pos SVs];

 vel = [vel SVs];

 % define orbital parameters

 t0 = ephem(sat,4); % ephemeris reference time (seconds)

 ecc = ephem(sat,5); % eccentricity (unitless)

 sqrta = ephem(sat,6); % square root of semi-major axis (meters1/2)

 omega0 = ephem(sat,7); % argument of perigee (radians)

 M0 = ephem(sat,8); % mean anomaly at reference time (radians)

 l0 = ephem(sat,9); % right ascension at reference (radians)

 omegaDot = ephem(sat,10); % rate of right acension (radians/second)

 dn = ephem(sat,11); % mean motion difference (radians/second)

 i0 = ephem(sat,12); % inclination angle at reference time (radians)

 iDot = ephem(sat,13); % inclination angle rate (radians/second)

 cuc = ephem(sat,14); % latitude cosine harmonic correction (radians)

 cus = ephem(sat,15); % latitude sine harmonic correction (radians)

 crc = ephem(sat,16); % orbit radius cosine harmonic correction (meters)

 crs = ephem(sat,17); % orbit radius sine harmonic correction (meters)

 cic = ephem(sat,18); % inclination cosine harmonic correction (radians)

 cis = ephem(sat,19); % inclination sine harmonic correction (radians)

 toc = ephem(sat,24); % time of clock, ephemeris (seconds)

 % define time of position request and delta t from epoch; correct

 % for possible week crossovers; 604800 seconds in a GPS week

 dt = t - t0;

 idx = find(dt > 302400); % if into the next week

 dt(idx) = dt(idx) - 604800;

 idx = find(dt < -302400); % if into the previous week

 dt(idx) = dt(idx) + 604800;

 % adjust the time for the propagation delays

 if (nargin == 3)

 dt = dt - prop_delay(:,sat);

 end

 % calculate mean anomaly with corrections

 n = (sqrt(muearth) * (sqrta).^(-3)) + dn; % mean rotation speed

 M = M0 + n .* dt;

 % compute the eccentric anomaly from mean anomaly using

 % Newton-Raphson method to solve for 'E' in:

 % f(E) = M - E + ecc * sin(E) = 0

 E = M;

 for i = 1:10

 f = M - E + ecc .* sin(E);

 dfdE = - 1 + ecc .* cos(E);

 dE = - f ./ dfdE;

 E = E + dE;

 end

 % calculate true anomoly from eccentric anomoly

 sinnu = sqrt(1 - ecc.^2) .* sin(E) ./ (1 - ecc .* cos(E));

 cosnu = (cos(E) - ecc) ./ (1 - ecc .* cos(E));

 nu = atan2(sinnu,cosnu);

 % calculate the argument of latitude and the argument of perigee

 % iteratively.

 omega = omega0;

 for i = 1:5

 u = omega + nu;

 cos2u = cos(2*u);

 sin2u = sin(2*u);

 omegaCorr = cuc.*cos2u + cus.*sin2u;

 omega = omega0 + omegaCorr;

 end

 % calculate longitude of ascending node with correction

 lcorr = omegaDot.*dt;

 l = l0 - OmegaE .* t + lcorr;

 % calculate orbital radius with correction

 rCorr = crc.*cos2u + crs.*sin2u;

35

 r = (sqrta.^2) .* (1 - ecc .* cos(E)) + rCorr;

 % calculate inclination with correction

 iCorr = iDot.*dt + cic.*cos2u + cis.*sin2u;

 i = i0 + iCorr;

 % find position in orbital plane

 u = omega + nu;

 xp = r .* cos(u);

 yp = r .* sin(u);

 % find satellite position in ECEF coordinates

 ECEFx = (xp .* cos(l)) - (yp .* cos(i) .* sin(l));

 ECEFy = (xp .* sin(l)) + (yp .* cos(i) .* cos(l));

 ECEFz = (yp .* sin(i));

 % append satellite locations

 pos = [pos ECEFx ECEFy ECEFz];

 % calculate velocity in the orbital frame

 % n is defined earliner (~line 47)

 vel_orbital_coef = ((n .* (sqrta .^ 4))./r);

 vel_orbital = [vel_orbital_coef .* -sin(E), vel_orbital_coef .* sqrt(1-ecc.^2) .* cos(E),

zeros(times,1)];

 % transform velocity at each time to the ECEF frame

 % this is the very ugly expansion of three rotation matrices:

 % rotZ(-l) * rotX(-i) * rotZ(-omega)

 vel_x_ecef = (cos(-l).*cos(-omega)-sin(-l).*cos(-i).*sin(-omega)).*vel_orbital(:,1)+(cos(-

l).*sin(-omega)+sin(-l).*cos(-i).*cos(-omega)).*vel_orbital(:,2)+sin(-l).*sin(-i).*vel_orbital(:,3);

 vel_y_ecef = (-sin(-l).*cos(-omega)-cos(-l).*cos(-i).*sin(-omega)).*vel_orbital(:,1)+(-sin(-

l).*sin(-omega)+cos(-l).*cos(-i).*cos(-omega)).*vel_orbital(:,2)+cos(-l).*sin(-i).*vel_orbital(:,3);

 vel_z_ecef = sin(-i).*sin(-omega).*vel_orbital(:,1)-sin(-i).*cos(-omega).*vel_orbital(:,2)+cos(-

i).*vel_orbital(:,3);

 % append the satellite velocity

 vel = [vel vel_x_ecef vel_y_ecef vel_z_ecef];

 end

 return;

end

9.8. formatData.m (written by Dr. Paul Kintner)
% checked 8/2006

% formatdata.m (actual file name: formatda.m)

%

% this utility transforms the data contained in 'ephemData' and

% 'obsData' into more convenient structures: 'ephem' and 'obs'

%

% input: 'ephemData' matrix which rows contain satellite orbital

% ephemerides

% 'obsData' matrix which rows contain a sample number. a GPS

% time, and SV ids along with corresponding observables; either

% pseudo-range or phase

% 'SV_ids' vector contains a list of SV ids which determine

% which satellites data will be formated for

%

% output: 'ephem' matrix which rows contain satellite orbital

% ephemerides; the rows are sorted by SV id order based on the

% input 'SV_ids'; the following is a description of the 'ephem'

% fields :

% ephem(:,1) SV number

% ephem(:,2) ephemeris reference week number

% ephem(:,3) ephemeris GPS reference time (seconds)

% ephem(:,4) ephemeris reference time of week (seconds)

% ephem(:,5) eccentricity

% ephem(:,6) square root of semi-major axis (meters1/2)

% ephem(:,7) argument of perigee (radians)

% ephem(:,8) mean anomaly at reference time (radians)

% ephem(:,9) right ascension at reference time (radians)

% ephem(:,10) rate of right ascension (radians/second)

% ephem(:,11) mean motion difference (radians/second)

% ephem(:,12) inclination angle at reference time (radians)

% ephem(:,13) inclination angle rate (radians/second)

% ephem(:,14) latitude cosine harmonic correction (radians)

% ephem(:,15) latitude sine harmonic correction (radians)

% ephem(:,16) orbit radius cosine harmonic correction (meters)

% ephem(:,17) orbit radius sine harmonic correction (meters)

% ephem(:,18) inclination cosine correction (radians)

% ephem(:,19) inclination sine correction (radians)

% ephem(:,20) af0 clock correction (seconds)

% ephem(:,21) af1 clock correction (seconds/second)

% ephem(:,22) af2 clock correction (seconds/second2)

36

% ephem(:,23) tgd clock correction (seconds)

% ephem(:,24) toc time of clock ephemeris reference time

% (seconds)

% 'obs' martix which rows contain a GPS time and then SV ids

% followed by corresponding observables, either pseudo-range

% (meters) or phase (cycles); SV ids are sorted according to the

% input 'SV_ids'; the following is a description of the 'obs'

% fields :

% obs(:,1) GPS time for sample (seconds)

% obs(:,2) SV identification

% obs(:,3) raw observable corresponding to SV id

% obs(:,4) SV identification

% obs(:,5) raw observable corresponding to SV id

% .

% .

% .

%

function [ephem, pseudo, dopp] = formatData(ephemData, obsData, obsDoppData, SV_ids)

% determine the number of satellites

 satellites = size(SV_ids,2);

% create 'ephem'

 for SV = 1:satellites

 r = find(ephemData(:,1) == SV_ids(SV));

 if (~isempty(r))

 ephem(SV,:) = ephemData(r,:);

 else

 ephem(SV,:) = zeros(1,24);

 end

 end

% remove all satellites with no ephemerides supplied

 idx = find(ephem(:,1) ~= 0);

 ephem = ephem(idx,:);

 SV_ids = SV_ids(idx);

 satellites = size(SV_ids,2);

% check if observable data has been supplied

 if (isempty(obsData))

 obs = [];

 return;

 end

% determine sample GPS times

 GPStime = obsData(:,2);

% determine number of samples

 samples = size(GPStime,1);

% create 'pseudo'

 SV_cols = [];

 for i = 1:((size(obsData,2) - 1) / 2)

 SV_cols = [SV_cols 2 * i + 1];

 end

 pseudo = zeros(samples,2 * satellites + 1);

 for t = 1:samples

 pseudo(t,1) = GPStime(t);

 for SV = 1:satellites

 c = find(obsData(t,SV_cols) == SV_ids(SV)) * 2;

 pseudo(t,2 * SV) = SV_ids(SV);

 if (~isempty(c))

 pseudo(t,2 * SV + 1) = obsData(t,c + 2);

 end

 end

 end

 pseudo = pseudocalc(ephem,pseudo);

% create 'dopp'

 SV_cols = [];

 for i = 1:((size(obsDoppData,2) - 1) / 2)

 SV_cols = [SV_cols 2 * i + 1];

 end

 dopp = zeros(samples,2 * satellites + 1);

 for t = 1:samples

 dopp(t,1) = GPStime(t);

 for SV = 1:satellites

 c = find(obsDoppData(t,SV_cols) == SV_ids(SV)) * 2;

 dopp(t,2 * SV) = SV_ids(SV);

 if (~isempty(c))

 dopp(t,2 * SV + 1) = obsDoppData(t,c + 2);

 end

 end

 end

% return 'ephem', 'pseudo', 'dopp'

37

 return

9.9. latlong.m (written by Dr. Paul Kintner)
% checked 8/2006

% latlong.m (actual file name: latlong.m)

%

% this GPS utility converts a position specified in ECEF coordinates

% into WGS-84 latitude-longitude-altitude coordinates

%

% input: 'location' vector which contains a position specified by

% ECEF coordinates (meters)

% [ECEFx ECEFy ECEFz]

%

% output: 'ecoord' vector which contains the same position specified

% by WGS-84 latitude (degrees), longitude (degrees), and

% altitude (meters)

% [latitude longitude altitude]

%

function ecoord = latlong(location);

% define physical constants

 constant;

% get ECEF location to be converted to latitude-longitude-altitude

% coordinates

 ECEFx = location(1);

 ECEFy = location(2);

 ECEFz = location(3);

% compute the longitude which is an exact calculation

 long = atan2(ECEFy, ECEFx); % radians

% compute the latitude using iteration

 p = (ECEFx^2 + ECEFy^2)^(1/2);

 % compute approximate latitude

 lat0 = atan((ECEFz/p)/(1-esquare)); % guess using h=0 approximation

 stop = 0;

 while (stop == 0)

 N0 = (AA^4/((BB^2)*sin(lat0)^2 + (AA^2)*cos(lat0)^2))^(1/2);

 altitude = p/cos(lat0) - N0; % meters

 % calculate improved latitude

 term = 0;

 lat = atan((ECEFz/p) * ((1 - (esquare*N0)/(N0+altitude)) ^ (-1)));

 % check if result is close enough,

 if (abs(lat - lat0) < 1e-12)

 stop = 1;

 end

 lat0 = lat;

 end

% convert the latitude and longitude to degrees

 latitude = lat0 * 180/pi; % degrees

 longitude = long * 180/pi; % degrees

% return location in latitude-longitude-altitude coordinates

 ecoord = [latitude longitude altitude];

 return

9.10. loaddata.m
function [ephem, pseudo, dopp] = loaddata(SV_ids)

ephemData = load('ephem.asc');

obsData = load('obs.asc');

doppData = load('obsdopp.asc');

[ephem, pseudo, dopp] = formatData(ephemData, obsData, doppData, SV_ids);

end

9.11. locdiff.m
function locations = locdiff(locations, center)

% difference each location from the first so that we get relative locations

length = size(locations,2);

locations = locations - [ones(1,length) * center(1);

 ones(1,length) * center(2);

 ones(1,length) * center(3);];

locations = locations(:,[2:length]);

end

38

9.12. locdiffmag.m
function result = locdiffmag(locations, center)

result = sqrt(mean(sum(locdiff(locations, center) .^ 2,1)));

end

9.13. pseudoCalc.m (written by Dr. Paul Kintner)
%tested on 9/2006

% pseudoCa.m (actual file name: pseudoCa.m)

%

% < DOES NOT INCLUDE IONOSPHERIC CORRECTIONS >

%

% this function calculates the pseudo-ranges based on raw

% pseudo-ranges with clock corrections applied

%

% input: 'ephem' matrix which rows contain orbital ephemerides for

% a given satellite; including satellite time correction terms

% < see formatData.m for description >

% 'pseudo' matrix which rows contain pseudo-range samples

% for a given time

% < see formatData.m for description >

% < in this case, psuedo = obs structure >

%

% output: 'pseudo-range' matrix which rows contain a GPS time

% (seconds), and then pairs of SV id numbers with corresponding

% corrected pseudo-ranges (meters)

% [GPStime svID pr svID pr ... ;

% GPStime svID pr svID pr ... ;

% ...

% GPStime svID pr svID pr ...]

%

% < DOES NOT INCLUDE IONOSPHERIC CORRECTIONS >

%

function pseudo_range = pseudocalc(ephem,pseudo)

% define physical constants

 constant;

% clear variable 'pseudo_range'

 pseudo_range = [];

% determine time samples

 GPStime = pseudo(:,1);

% determine number of samples taken

 samples = size(pseudo,1);

% determine number of satellites being used

 satellites = size(ephem,1);

% get clock correction parameters from 'ephem'

 refTime = ephem(:,24);

 af0 = ephem(:,20);

 af1 = ephem(:,21);

 af2 = ephem(:,22);

 tgd = ephem(:,23);

% create 'pseudo_range' by correcting pseudo-ranges of each raw

% pseudo-range measurement for each time sample

 for t = 1:samples

 % determine pseudo-range corrections due to satellite clock

 % corrections calculate time offset from satellite reference

 % time

 timeOffset = GPStime(t) - refTime;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 % calculate clock corrections 'cc'

 %%%%% NOTE: this is the satellite clock correction

 cc = af0 + af1.*(timeOffset) + af2.*(timeOffset.^2) - tgd;%%%

 % calculate change in raw pseudo-range due to clock

 % corrections

 clockCorr = c.*cc;

 % calculate total pseudo-range correction

 pseudoCorr = clockCorr;

 % apply corrections to pseudo-range measurements and add

 % samples into 'pseudo_range' structure

 sample = GPStime(t);

 for i = 1:satellites

 pseudoR = pseudo(t,2 * i + 1);

 if (pseudoR ~= 0)

 corrPseudoR = pseudoR + pseudoCorr(i);

 else

 corrPseudoR = 0;

 end

 sample = [sample ephem(i,1) corrPseudoR];

39

 end

 pseudo_range = [pseudo_range; sample];

 end

% return corrected pseudo-ranges

 return;

9.14. surfacevelocity.m
% Calculates the correction to apply to a receiver's observation

% of satellite velocity due to Earth's rotation.

% Input:

% position - the position of the receiver relative to the earth's center

% latlongalt - the position of the receiver in latitude/longitude relative

% to the center of the spherical earth model. coordinates in

% degrees and altitude in meters.

function [vel] = surfacevelocity(position, latlongalt)

constant;

N = latlongalt(3) + sqrt(AA.^4/(BB.^2*sin(latlongalt(1)*degrad).^2+AA.^2*cos(latlongalt(1)*degrad).^2));

vel = OmegaE * cos(latlongalt(1)*degrad) * N * [-sin(latlongalt(2)*degrad), cos(latlongalt(2)*degrad),

0];

end

40

10. The Dogpler Cone
http://www.diaryofawebsite.com/photos/conehead.jpg

11. Pseudoramster
http://farm3.static.flickr.com/2172/2203720240_9fed55ae90_o.jpg

